Mathilde Wanneveich Hélène Jacqmin-Gadda, Catherine Helmer and Pierre Joly

University of Bordeaux, Isped - Inserm U 897

GDR Toulouse, October 3rd 2014.

Context

Introduction

Context

- ▶ in France in 2010: more than 990 000 case of dementia,
- increase of number of older people.
 - \longrightarrow consequences in 2030 ?

Motivating question

How evaluate the impact of preventive policy on population at risk to develop dementia?

Objectives

Consider the impact of an intervention targeting a risk factor of dementia:

- on health indicator projections (prevalence, life expectancy...),
- under several intervention scenarios,
- to compare and assess the intervention interest.

with t the calendar time, b the birth, t-b the age at t time, $\nu(a_0|b)$ number of people of age a_0 born at b. NB: $\alpha_2(t,b)$ defines the death risk in overall population.

Incidence

- $\forall t b \le 65, \alpha_{01}(t, b) = 0$, (then $a_0 = 65$),
- ▶ homogeneity over calendar time: $\alpha_{01}(t,b) = \alpha_{01}(t-b)$,

Death risk for demented

For t - b > 65, $\alpha_{12}(t, b)$ is:

- independent of time spent in dementia,
- ▶ variable over calendar time: $\alpha_{12}(t,b) = g(t-b)\alpha_{02}(t-b|t)$, \rightarrow with g(t-b) the relative risk of death of demented versus non-demented.

Cohort study (PAQUID) to estimate:

- $ightharpoonup lpha_{01}$ by age and gender,
- ▶ g(t b) by age and gender

Demographics data (from INSEE) to estimate:

- $ightharpoonup \alpha_2$ by age, gender and year,
- $\triangleright \nu(65|b)$ by gender and year.
- \hookrightarrow Then we estimate α_{02} et α_{12}
 - by resolution of a differential equation (Runge Kutta 4)

Intervention

We introduce z=(0,1), a variable exposure to a risk factor,

Proportional intensities model:

$$\alpha_{ij}(t-b|t,z) = \alpha_{ij}^{0}(t-b|t)(\theta_{ij})^{z}$$

ightarrow with α^0_{ij} baseline transition intensities between state i and state j and θ_{ij} relative risk associated to z.

Observations:

- $ightharpoonup lpha_{ij}^0$ are estimate by resolution of an equation system.
 - ightarrow least square method, and cubic spline approximation.
- Assumed to be known
 - \triangleright $p_0(65)$, the risk factor prevalence at 65 years old, for non-demented subjects (state '0').
 - θ_{ii} in the context without intervention.

Targeting dementia risk factors from a given year au

• on subjects aged a_{τ} since a given year (with $a_{\tau} \geq 65$ years old),

May change:

- ▶ the risk factor prevalence at age a_{τ} (when the intervention occurs),
- ▶ and/or each θ_{ij} independently.

Consequences:

- ightharpoonup must take into account state demented/non-demented at τ ,
- ▶ a change in exposure status is possible after 65 years.

Remarks: the risk factor can't be acquired after 65 years old.

Main Functions

Probability for a subject born in b and alive at 65 years old to be non demented and alive at t-b, depending on the risk factor exposure:

$$P_{00}(65,t-b|t,z) = \mathrm{e}^{-A_{01}(65,t-b|z)-A_{02}(65,t-b|t,z)}$$
 \rightarrow with $A_{ij}(65,t-b|t,z) = \int_{65}^{t-b} \alpha_{ij}^0(u|t)(\theta_{ij})^z du$, the cumulative transition intensities between state i and j , depending on the risk factor exposure.

Probability for a subject born in b and non demented at 65 years old to be demented and alive at t-b, depending on the risk factor exposure:

$$P_{01}(65, t-b|t, z) = \int_{65}^{t-b} e^{-A_{01}(65, u|z) - A_{02}(65, u|t, z)} (\theta_{01})^z \alpha_{01}^0(u) e^{-A_{12}(u, t-b|t, z)} du$$

Probability for a subject born in b, demented at a_1 (with $a_1 > 65$) to be alive at t - b, depending on the risk factor exposure:

$$P_{11}(a_1, t - b|t, z) = e^{-A_{12}(a_1, t - b|t, z)}$$

Life expectancy at age x, for a given year t

Life expectancy without dementia, depending on the risk factor exposure:

$$LE_{00}(x|t,z) = \int_{x}^{\infty} P_{00}(x,u|t,z)du$$

Life expectancy for demented at age x, depending on the risk factor exposure:

$$LE_{11}(x|t,z) = \int_{x}^{\infty} P_{11}(x,u|t,z)du$$

Life expectancy for non demented at age x, depending on the risk factor exposure:

$$LE_{0.}(x|t,z) = \int_{x}^{\infty} (P_{00}(x,u|t,z) + P_{01}(x,u|t,z))du$$

Remarks:

To obtain life expectancy independently of z, we weight by the proportion of exposed/unexposed subjects at age x and time t (distinguishing demented or non-demented status).

Overall life expectancy:

$$LE_{..}(x|t) = \pi_0(x|t)LE_{0.}(x|t) + (1 - \pi_0(x|t))LE_{11}(x|t)$$

 \rightarrow with $\pi_0(x|t)$ the proportion of non-demented subjects at age x and time t among subjects alive

Prevalence of dementia on ages 65 to 100, for a given years t:

$$Prev(t) = \sum_{z=0}^{1} \sum_{i=0}^{35} \nu(65, t - 100 + i|z) P_{01}(65, 100 - i|t - 100 + i, z)$$

Number of years spent in dementia at age x and time t:

$$T_{11}(x|t) = LE_{0.}(x|t) - LE_{00}(x|t)$$

Overall risk to develop dementia at age x and time t, depending on the risk factor exposure:

$$F_{01}(x|t,z) = \int_{x}^{\infty} P_{00}(x,u|t,z)(\theta_{01})^{z} \alpha_{01}^{0}(u) du$$

Example of scenario

Objective

Studying the impact of high blood pressure (HBP) effect modifications.

Context

- ▶ Prevalence of HBP at 65 year: $p_0(65) = 0.4$,
- ▶ The intervention takes place in $\tau = 2015$, on people older than 65 years.

Scenario 1:

- lacktriangle effect of HBP stronger on death than on dementia: $heta_{01}=1.5$ and $heta_{02}= heta_{12}=2$
- intervention impact
 - \rightarrow 1.a: $p_0(65) = 0.2$, θ_{ij} unchanged.
 - \rightarrow 1.b: $\theta_{01} = 1.27$, $\theta_{02} = \theta_{12} = 1.74$, $p_0(65)$ unchanged.

Scenario 2:

- effect of HBP stronger on dementia than on death: $\theta_{01}=2$ and $\theta_{02}=\theta_{12}=1.5$
- ▶ intervention impact $\rightarrow p_0(65) = 0.2$, θ_{ii} unchanged.

Results: Prevalence in 2030

Table: Estimated prevalence of dementia in France for subjects between 65 and 99 years in 2030 under 3 scenarios of preventive intervention, compared to projections without intervention.

tal %												
No. p p^* θ_{01} θ_{01}^* θ_{02} θ_{02} θ_{02}^* θ_{12} θ_{12}^* Women Men Total % Projections without intervention												
- 00												
Projections with intervention												
00 +22.4												
00 +0.2												
00 + 12.1												
0												

[#] change as compared with the predicted prevalence without intervention.

Results: Life expectancy without dementia

Figure: LE₀₀ in 2030 between 70 and 80 years old by gender, with or without intervention in 2015.

Men

Overview of results

Scenario

Table: Projections in 2030 for men and women aged 70 years old.

No.	р	p*	θ_{01}	θ_{01}^*	θ_{02}	θ_{02}^*	θ_{12}	θ_{12}^{*}	LE ₀₀	LE_{0} .	LE_{11}	LE	T_{11}	F ₀₁
Projections in 2030 without intervention								15.06	17.79	9.73	17.68	2.73	0.484	
Projections in 2030 with intervention in 2015														
1.a	0.4	0.2	1.5	1.5	2	2	2	2	15.80	18.73	11.02	18.64	2.93	0.493
1.b	0.4	0.4	1.5	1.27	2	1.74	2	1.74	15.44	18.19	10.52	18.09	2.75	0.480
2	0.4	0.2	2	2	1.5	1.5	1.5	1.5	15.80	18.49	10.46	18.40	2.69	0.467
· ·														
Scenario							Women							
No.	р	p*	θ_{01}	$ heta_{01}^*$	θ_{02}	θ_{02}^*	θ_{12}	θ_{12}^*	LE_{00}	LE_{0} .	LE_{11}	LE	T_{11}	F_{01}
Projections in 2030 without intervention								16.73	21.68	12.26	21.54	4.95	0.708	
Proje	ections	s in 20	030 w	ith inte	rventi	on in 2	2015							
1.a Î	0.4	0.2	1.5	1.5	2	2	2	2	17.96	22.60	13.80	22.48	5.26	0.716
1.b	0.4	0.4	1.5	1.27	2	1.74	2	1.74	17.10	22.10	13.20	21.98	5	0.704
2	0.4	0.2	2	2	1.5	1.5	1.5	1.5	17.48	22.39	13.08	22.28	4.91	0.693
In h	Jd +b	بياديد	e mor	lified a	fter th	e inter	vontio	n						

Discussion / Prospects

The actual model: markov non homogeneous

doesn't take into account time spent in dementia.

Alternative: semi-markov model

doesn't take into account age.

Solution: a semi-markov model

taking into account both age of subject and time spent in dementia.

Others prospects:

- more various intervention (before 65 years; risk factor acquire after 65 years...)
- impact on others health indicators.

References

- 1. Joly P, Touraine C, Georget A, Dartigues JF, Commenges D, Jacqmin-Gadda H. Prevalence projections of chronic diseases and impact of public health intervention. Biometrics.2013; 69:109-117.
- 2. Jacqmin-Gadda H, Alpérovitch A, Montlathuc C, Commenges D, Leffondré K, Dufouil C et al. 20-years prevalence projections for dementia and impact of preventive policy about risk factors. European Journal of Epidemiology, in press. 2013.
- 3. Touraine C, Helmer C, Joly P. Prediction in an illness-death model. Stat Methods Med Res.2013; 0(0)1-19.
- 4. Andersen PK. Decomposition of number of life years lost according to Prediction in an illness-death model. Stat Med.2013 Dec 30;32(30):5278-85.