Pharmacodynamic model of the evolution of biomarkers and analysis of repeated bone events in Gaucher Disease patients

Marie VIGAN, France MENTRE

UMR 738, INSERM, University Paris Diderot, Sorbonne Paris Cite

June 25, Paris
GDR Statistique et Santé 2013
Gaucher Disease (GD)

- Rare recessive inherited disorder due to deficiency of lysosomal enzyme glucocerebrosidase
- Accumulation of glucosylceramide in macrophage
- Leads to abnormal concentrations of different biomarkers
- Patients suffer from bone events: bone infarcts, osteonecrosis, fractures...
- French Registry on GD\(^1\): 562 patients

Treatment

- Enzyme Replacement Therapy (ERT): imiglucerase
- Normalized glucosylceramide
- Normalized biomarkers under ERT
 - Serum ferritin
 - Chitotriosidase activity
- Cohort of treated patients in the French Registry
 - Repeated measurements of biomarkers
 - Presence of bone events

\Rightarrow No physiological model has been proposed to analyze the evolution of biomarkers2

Objectives

1. To develop a drug-disease model explaining the response of two biomarkers to ERT

2. To analyze the occurrence of repeated bone events
 ⇒ Analysis of response to ERT and of effect of several covariates
Patients characteristics

- 176 patients with data on ferritin or chitotriosidase under ERT
- ERT: infusion every 2 weeks
- Patients are followed during: 7 (0-19) years after initiation of ERT
- Analysis of all measurements since initiation of ERT until stop of ERT/end of follow-up
- Covariates
 - Sexe: 51% are male
 - Age: 18% were under 15 years old at ERT initiation
 - Genotype: 11% are homozygotous for the mutation N370S
 - Splenectomy: 49% had a splenectomy before ERT
 - Dose of ERT: 120 (29-240) UI/kg
 - Dose of ERT greater than 120 UI/kg: 80%
Deficiency of lysosomal enzyme glucocerebrosidase
- Accumulation of glucosylceramide
- Leads to the increase of biomarkers
Non linear mixed effect models

For i = 1,...,N patients, y_{ij} concentration of biomarker of individual i at time j (j = 1,...,n_i)

$$y_{ij} = f(t_{ij}, \psi_i)(1 + \varepsilon_{ij})$$

- f: structural model
- ψ_i: individual parameters

$$\psi_i = \mu \exp(\eta_i)$$

- μ: fixed effects
- η_i: random effect, $\eta_i \sim N(0, \Omega)$
 - Ω: variance-covariance matrix
- ε_{ij}: random variable of error model, $\varepsilon_{ij} \sim N(0, \sigma^2)$
Model building

Half-life of biomarkers are very short compared to disease evolution, and are neglected

\[f(t_{ij}, \psi_i) = C(t) = C_0[r + (1 - r) \exp(-kt)] \]

- \(C_0 \): initial concentration
- \(r \): amplitude of biomarkers decrease
- \(k \): rate constant of glucosylceramide normalization under ERT

Vector of parameters:
\((C_0, r, k)\)
Model building (2)

- Separate analyses of each biomarker
 - Choose the best model
 - Compare models using BIC
- Joint analysis of the two biomarkers
 - Evaluation whether one or several parameters are correlated
 - Selection of covariates with LRT
- Estimation were performed with SAEM algorithm in MONOLIX3
v4.2.0 and likelihood computed with Importance Sampling

Data

<table>
<thead>
<tr>
<th></th>
<th>Ferritin</th>
<th>Chitotriosidase</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>138</td>
<td>155</td>
</tr>
<tr>
<td>Number of observations</td>
<td>602</td>
<td>624</td>
</tr>
<tr>
<td>Median per patient</td>
<td>3 (1-22)</td>
<td>3 (1-24)</td>
</tr>
</tbody>
</table>

Serum ferritin

Chitotriosidase activity
Parameters estimation

- **Best model with similar rate constant of glucosylceramide normalization** (BIC= 19018 vs. 19034)

<table>
<thead>
<tr>
<th>Fixed effects</th>
<th>Estimates</th>
<th>RSE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$k \ (\text{years}^{-1})$</td>
<td>1.04</td>
<td>17</td>
</tr>
<tr>
<td>$C_{0F} \ (\text{ng/L})$</td>
<td>611</td>
<td>8</td>
</tr>
<tr>
<td>$C_{0C} \ (\text{nmol/h.mL})$</td>
<td>7.23×10^3</td>
<td>11</td>
</tr>
<tr>
<td>r_F</td>
<td>0.29</td>
<td>10</td>
</tr>
<tr>
<td>r_C</td>
<td>0.08</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variabilities</th>
<th>Estimates</th>
<th>RSE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω_k</td>
<td>1.25</td>
<td>14</td>
</tr>
<tr>
<td>$\omega_{C_{0F}}$</td>
<td>0.86</td>
<td>7</td>
</tr>
<tr>
<td>$\omega_{C_{0C}}$</td>
<td>1.21</td>
<td>7</td>
</tr>
<tr>
<td>ω_{r_F}</td>
<td>0.74</td>
<td>10</td>
</tr>
<tr>
<td>ω_{r_C}</td>
<td>1.20</td>
<td>11</td>
</tr>
<tr>
<td>σ_F</td>
<td>0.29</td>
<td>4</td>
</tr>
<tr>
<td>σ_C</td>
<td>0.6</td>
<td>4</td>
</tr>
</tbody>
</table>

- **Half-life of glucosylceramide normalization under ERT**: 0.67 year
- **Normalized ferritin value**: 177 ng/L
- **Normalized chitotriiosidase value**: 578 nmol/h.mL
Individually fits

Serum ferritin

Chitotriosidase activity
Individual weighted residuals

Serum ferritin

Chitotriosidase activity
Visual Predictive Check

Serum ferritin

Chitotriosidase activity
Covariate analysis

- **3 significant effects**

<table>
<thead>
<tr>
<th></th>
<th>< 15 years</th>
<th>> 15 years</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{0F} (rse %)</td>
<td>193 (17%)</td>
<td>726 (8%)</td>
<td><0.01</td>
</tr>
<tr>
<td>C_{0C} (rse %)</td>
<td>11300 (26%)</td>
<td>7080 (13%)</td>
<td>0.03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Splenectomized women</th>
<th>Non splenectomized or men</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_F (rse %)</td>
<td>0.16 (15%)</td>
<td>0.47 (10%)</td>
</tr>
</tbody>
</table>

![Box plots](image1.png)
![Box plots](image2.png)
![Box plots](image3.png)
Frailty model

For i=1,...,N patients

T_{ij} time of j^{th} events (j=1,...,n_i)

T_{in} censure

- $\lambda(t_{ij})$ parametric hazard function

$$\lambda(t_{ij}) = \lambda_0(t_{ij}) \exp(b_i + \beta Z_i)$$

- b_i: random effect $\sim N(0, \omega^2)$
- Z_i: covariate vector
- β: vector of regression parameter

\Rightarrow Exponential model $\lambda_0(t_{ij}) = \lambda$
Model building

- Studied of covariates
 - Similar covariates as before
 - Estimated individual random effects of ferritin and chitotriosidase from biomarkers modelling: C_0, r, k

- Selection using LRT

- SAEM algorithm in MONOLIX has already been evaluated for frailty models4

- Estimation were performed using SAEM algorithm in MONOLIX v4.2.0 and likelihood computed with Importance Sampling

4 Vigan M et al., \textit{44ème Journées de Statistiques}, mai 2012.
176 patients: 33 patients with bone events, total number 48 median number per patient: 0 (0-4)
Estimated parameters

- Without covariate

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimates</th>
<th>RSE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ years$^{-1}$</td>
<td>0.016</td>
<td>25</td>
</tr>
<tr>
<td>ω</td>
<td>1.02</td>
<td>16</td>
</tr>
</tbody>
</table>

Probability of an event during the first 10 years: 14.8 %
Covariate analysis

- 2 significant effects

<table>
<thead>
<tr>
<th>Covariate</th>
<th>HR</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age < 15 years vs. > 15 years</td>
<td>9</td>
<td>0.007</td>
</tr>
<tr>
<td>Chitotriosidase increase of 10 nmol/h.mL</td>
<td>100</td>
<td>0.013</td>
</tr>
</tbody>
</table>

![Graph showing lambda vs. eta_C_OC (ng/L) with two clusters: one for >15 years and another for <15 years.]
Conclusion

- First study of the biomarkers evolution in GD using a dynamic model
- Similar rate constant of glucosylceramide normalization
- Effect of age below 15 years at initiation of ERT
- Perspectives
 - Modelling evolution of haemoglobin and platelets
 - Joint modelling of biomarkers and repeated bone events
Thank you for your attention!

Acknowledgements: Nadia Belmatoug, Anne Boutten, Catherine Caillaud, Bruno Fantin, Roselyne Froissard, Jérôme Stirnemann